
Faster
Continuous
Integration
Builds

2021 Guide to

By: Jim Holmes

Table of Content

.....................

..

...

..

..

3

3

4

5

6

..6

...6

..7

..8

..8

..9

..9

..9

..9

..10

...10

...10

...11

...12

..12

....................................12

..13

........................14

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

We Hate Slow Builds Already—But Here's Another Reason To

The Timebox Rules Everything

Improving Your Delivery

Industry Leaders on the Power of Fast Builds

Impacts of Slow Builds

Slower Delivery of Value to Customer

Dropping Out of "The Zone"

Worse Maintainability

Automated Tests Ignored

Devs Narrow Scope of Executed Tests

Static Analysis and Other Quality Approaches Ignored

Speeding Up Builds Manually

More Hardware Fixes Everything!

Manually Split Into Units / Tasks

Cost of Effort

Speeding Builds and Tests With Incredibuild

Overview of Incredibuild's Architecture and Solutions

Scaling Out to Cloud

Low-Impact Solution

Some Real-World Time Improvements

Maturing from Long Builds to Continuous Integration

Time Savings Equate to Better Testing

Don't Tolerate Painfully Long Builds; Deliver Better Products!

© 2021 | All rights reserved. Incredibuild Software Ltd. 2

We Hate Slow Builds Already—
But Here's Another Reason To

Slow builds are a headache for every project team that has worked on any moderately complex

software project. Delivery teams struggle to get in a stable cadence of work: specify

requirements, discuss the work, do the work, build and check the software, push out to the

appropriate environment. Getting to a point where your team is comfortable with that cadence is

hard! Anything that slows that cadence directly impacts a product’s overall quality and value.

Harder yet is to maintain that cadence as the project continues to grow and mature. More

features are added, dependencies and complexity increase, and any number of other issues hit

home. Too often, the build process becomes the major impediment to a project’s success. Have

you been a part of a project where the all-inclusive build is only done once a night or, worse yet,

left until the weekend?

Living in this sort of environment turns in to a serious risk for the project’s quality: delays in builds

cause teams to cut corners in critical areas. Tests don’t get written—it takes too long for the red,

green, refactor flow of good test-first development, much less test-whenever-development.

Tests don’t get executed as part of every local build—who can wait the extra time on top of an

already slow build? Tests get left out of the scope of execution—I only have enough time to run

these few tests; forget checking integration tests for side effects!

In this paper, we will look at a number of quality-related concerns
around slow builds, and we will investigate several approaches to
addressing these concerns.

The Timebox Rules Everything

24 hours per day, seven days a week, four weeks per month. You can’t get around those time

constraints. You can add more workers, but still, there’s only so much you can do in a fixed

amount of time. As build cycles lengthen, teams have to consider what they can tack on to the

process. Often tradeoffs are made which put a project’s overall quality at risk, in favor of focusing

on adding in more functionality, linked resources, additional projects, etc.

In the following section, we’ll take a deeper look at the ramifications of those decisions.

3

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

It doesn’t matter if you are doing agile, waterfall, scrummerfall, chaos, or some other

methodology of software development: Your team and customers benefit from you working to

improve how you deliver software. Smoothing your delivery process means less drama at release

time. Improving your delivery process means less angst and fear when adding features or

modifying your codebase. Improving your delivery process means your customers get better

value faster—it’s not a myth!

Continuous improvement is a concept focused on helping teams and organizations get better

at how they deliver software. You don’t have to buy off on everything described in the

referenced article; simply focusing on a few things may be enough for you—and likely your build

cycle should be near the top for consideration!

Feedback cycles are one of the crucial themes running through continuous improvement, Lean

software, agile software, and other philosophies/methodologies. A feedback cycle (or feedback

loop) is an expression of the time it takes for a change in the system to be reflected. Feedback

cycles exist at the long/slow scale (did a customer’s bug get fixed in the latest release?) too

much smaller/faster (did the unit test I just wrote pass when I ran it?).

Much has been written on feedback cycles; the three posts listed below would be a great

starting point for learning more:

Scott Ambler’s article on how faster feedback cycles are central to Agile

Ron Jeffries calls out the importance of testing to good feedback

Gary Bernhardt’s post on blisteringly fast feedback

4

Improving Your Delivery

1

2

3

4

1 See a great introductory article at http://leankit.com/kanban/continuous-improvement/

2 www.ambysoft.com/essays/whyAgileWorksFeedback.html

3 ronjeffries.com/xprog/what-is-extreme-programming/

4 https://www.destroyallsoftware.com/blog/2014/tdd-straw-men-and-rhetoric

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

5

Thankfully, the software industry has thought leaders who have been emphasizing the

importance of a fast build cycle for a long time. There is a solid body of writing and speaking in

this area. Michael Feathers’ wonderful standard Working Effectively with Legacy Code

repeatedly talks to cutting build time as part of reining in a codebase. James Shore’s and Shane

Warden’s seminal work The Art of Agile Development (and other books) speak of a ten-minute

build cycle.

A simple Google search shows us how thinking around this has changed over the last decade or

so. You can see back as early as 2001 where Joel Spolsky and others were preaching the

importance of a daily integration build.

The industry has continued to evolve since then, with the focus now on Continuous Integration.

The Continuous Integration philosophy speaks to building and integrating on a daily basis—but

encourages teams to look to much more frequent build/integrations. Entire tool platforms have

evolved to help teams embrace more frequent builds/integrations/deployments on a nearly

Industry Leaders on the Power
of Fast Builds

5

5 https://www.thoughtworks.com/continuous-integration

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

Software testers and especially developers love to debate about getting “in the zone.” The Zone

is a highly focused state of concentration where a person turns in to a “super producer.”

Programmers cherish getting in the zone because they’re able to rapidly solve complex

problems, knock out difficult tasks, and deliver value in extremely short periods.

Not everyone’s happy when the build speeds up. XKCD’s infamous comic is a humorous take

on a team that fills the time with slow builds in “interesting” ways. That said, perhaps you can find

another way to meet your teams’ needs for creative anachronism!

6

continuous basis, often every five to ten minutes. This dramatically speeds up the feedback

cycle. Teams get near-instantaneous pass/fail status when integrating instead of waiting days!

Our industry is continuing to evolve and we have matured to understand even daily feedback on

integrating, building, and testing the entire system may be too long. Jez Humble and other

industry thought leaders are preaching the value of continuous delivery, not just integration!

6

7

Impacts of Slow Builds

Slower builds have many impacts across a team’s efforts. Those impacts hit morale, costs, and

the ability to create high-quality software.

Slower Delivery of Value to Customer

At the end of the day, nothing matters if software teams aren’t shipping value to their customers.

Everything that’s a roadblock to progressing code to production and handing it off to end users

is an impediment. In Lean Software Tom and Mary Poppendieck, famously ask “How long does it

take to deploy one line of code to production?”

What happens if you have a serious defect in your production environment, say one that puts

your revenue at risk—a crucial security flaw, perhaps? Can you get your issue fixed, promoted,

built, tested, and deployed in a reasonable amount of time? Or are you so constrained by your

build process that it might take hours or -- worse yet -- days to roll that change out?

Dropping Out of "The Zone"

6 http://continuousdelivery.com/

7 https://xkcd.com/303/ (Creative Commons BY-NC 2.5)

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

7

Source: xkcd

Humans avoid painful situations. Draw what metaphors you will (physical injury, emotional stress,

SharePoint development projects), but brutally long build cycles certainly fit in this category.

Desire to avoid dealing with painfully long integration and test builds can actually have a

negative impact on the maintainability of projects. Teams will put off the pain of trying to run an

integration build which incorporates multiple components, branches, projects, etc. if that build

takes too long to run. The integration will be put off to a nightly build, then to a weekly build,

then to once an iteration, and so on.

Teams in this state have surrendered to the complexity, rather than working to resolve it. Martin

Fowler has a terrific article on doing integrations as frequently as possible. His theme is “if it

hurts, do it more often,” meaning work through the painful parts of your delivery pipeline to

focus on delivering value as quickly as possible.

Worse Maintainability

8

8 http://martinfowler.com/bliki/FrequencyReducesDifficulty.html

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

8

Sadly, slow builds can also cause teams to rely less and less on automated test suites. Think

about it: if you’re already suffering with long build times, a natural (but WRONG!) reaction is to

avoid doing anything to add to that build time. This has been proven out in the software industry

as teams write fewer tests and run those tests less frequently. This leads to increased regressions,

especially in more complex systems, as teams lose the benefits of their automated test suites.

One practical example of this is ModuleWorks, a provider of CAD/CAM components.

ModuleWorks’ complex distribution architecture requires building 32 different sets of releasable

binaries to support customer configurations. Their build times were so long that developers were

only integrating once a day—and their GTest suite for their C++ code was rarely being run. Only

after implementing Incredibuild, discussed below, were they able to implement continuous

integration and automated testing.

Automated Tests Ignored

Another way teams will reduce build times is to cut the scope of tests they’re executing. Instead

of running all tests in unit or integration suites, developers might limit the test execution scope to

the specific component they’re working on at the moment.

This bad practice results in a loss of exposure to potential side effects as teams write code. Think

about it: one of the main reasons for a suite of automated tests is to provide a safety net for

ongoing development! A well-written, thoughtfully constructed suite of tests gives us

confidence to alter parts of the system knowing with utter certainty that tests lock down

behavior in other areas of the system.

Retalix, a division of NCR Retail, offers a streamlined suite of systems for online, mobile, and

in-store retail systems. Retalix had a suite of 15,000 unit tests that took 12 minutes to

execute—after a complete optimization of every developer’s system. 12 minutes to run unit tests

is far too long, and Retalix’s development teams weren’t utilizing the tests as much as they

should have. (Read the referenced case study to see how Retalix brought their test runs down to

1 minute 20 seconds!)

Devs Narrow Scope of Executed Tests

9

10

9 ModuleWorks Accelerates Testing & Continuous Integration Enabling Advanced Manufacturing, Incredibuild Case

Study at https://www.incredibuild.com/case-studies/moduleworks

10 See “Retalix Case Study” https://www.incredibuild.com/case-studies/retalix

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

9

Tools like Visual Studio’s Code Analysis Tools, NDepend, SonarQube, or similar items, can be an

extraordinary help in ensuring a codebase’s quality and maintainability. These tools flag quality

issues like complexity, dependencies, code metrics, etc. and can be used as a gate for moving

your code through your delivery pipeline.

Unfortunately, these tools take time to run, which means they’re certainly not going to be utilized

in environments where builds are already the bottleneck to productivity and delivery.

Static Analysis and Other Quality Approaches Ignored

Naturally, many organizations first look to hardware for speeding up slow builds. In many cases,

this can make sense; it’s easy to swap out a build server or two. What happens when that doesn’t

improve the problem much, though? Besides, hardware takes time to procure, set up, configure,

and maintain.

If you’re looking to create a new pool of remote agents, then you’ll need to handle the

procurement, setup, configuration, and maintenance for those as well! Moreover, integrating

those remote agents into your build system can be extremely difficult. You’ll need to make sure

all your tool chain handles parallelization: build server, build system, test frameworks, etc. Teams

who are looking for a balance of payoff / effort may have a hard time justifying the effort

involved. Regardless, you are still constrained by the speed of your strongest build

hardware—which may not be enough. Buying additional hardware that may only be needed for

peak times may be an expensive proposition, rather than optimizing your already-existing

hardware and existing processing power.

More Hardware Fixes Everything!

Builds sometimes can be sped up by manually splitting the build job in to multiple pieces and

executing those pieces manually.

This solution is fraught with peril, though. Teams, already burdened with enough work delivering

software, now have to manage the build process manually through dependencies, updates, and

new tasks. It’s a costly effort to handle this sort of thing manually, and forces the teams to build

deep expertise in the build pipeline.

Manually Split Into Units / Tasks

Speeding Up Builds Manually

Teams learn to overcome slow builds in many ways, other than just continuing to suffer with

them. Lots of effort, sometimes spent over a year or more, is distributed across reconfiguring

complex build cycles, standing up new hardware, and reworking entire test suites.

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

Dependency management is a painful but crucial part of any software system. Platform

dependency management tools like Bundler for Ruby, Maven for Java, NuGet for .NET, and

others, are complex tools that are meant to offload the pain of dependency management.

Teams splitting up builds now own much of this dependency management, since the build

pipeline won’t know how to deal with dependencies between separate build jobs.

It’s critical that teams keep in mind the costs of efforts around speeding up the builds. Many

teams spend months, if not years, tuning their build processes. Emanuil Slavov’s “Need for

Speed” talk at ISTA Conference 2015 laid out a story of an 18 month journey to cut test

execution time from three hours to three minutes. That’s a terrific improvement; however, an

incredible amount of effort was expended.

Was that effort worth the expense? For Emanuil’s team it certainly was; however, one can only

wonder what other options they might have explored which could have given them back

hundreds or thousands of hours to spend focusing on delivery instead of infrastructure.

Cost of Effort

Incredibuild offers teams and organizations just that capability: rapidly scale out build

infrastructure to dramatically improve build times—all with a minimal investment in setup,

configuration, and management of build resources. Incredibuild enables organizations to quickly

stand up pools of build agents with a central build coordinator. Developers, testers, or anyone

with Incredibuild installed to initiate a build which is distributed across the pool of agents.

Splitting a long-running build in to tasks and executing those in parallel reaps huge rewards with

a minimal investment in time and resources.

Additionally, other long-running tasks can be handled by Incredibuild. Game development

organizations are using Incredibuild to speed up their graphics and audio rendering jobs, tasks

Overview of Incredibuild's Architecture and Solutions

11

11 http://www.agiletestingdays.com/session/need-for-speed/

10

Speeding Builds and Tests With Incredibuild

Organizations looking to speed up their build times have a fine line to walk between

accomplishing the speed increases and throwing too many people and resources at the effort.

Emanuil Slavov’s effort, mentioned earlier in this paper, took 18 months to achieve their goals.

They realized tremendous results after a long period of hard work updating infrastructure, build

configurations, data management, and test automation strategy. While the results were terrific,

perhaps that effort could have been better spent directly delivering value if other options for

build optimization were available.

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

11

that are well-known to take inordinate amounts of time. Other organizations leverage

Incredibuild to dramatically cut automated test suite execution times and speed up code

analysis.

It is important to understand that Incredibuild’s agents are not the same as those for Jenkins,

Team Foundation Server, or TeamCity. Those tools’ agents are complementary to Incredibuild’s

agents. For example, Incredibuild frees Jenkins build agents from the performance limitations

imposed on it by its own hardware. The two sets of agents can be used in conjunction with each

other to truly transform a build workstation into a system using potentially hundreds of processor

cores and gigs of memory.

Incredibuild’s capabilities don’t require organizations to invest in multiple new systems to scale

out their long-running tasks. Instead, organizations can use Incredibuild’s agents on existing

systems. Incredibuild will only distribute tasks out to systems which have an appropriate amount

of free CPU cycles and memory. This means you can have agents running on systems idle in a

corner, on systems lightly used by administrators or program managers, even on systems

actively used by developers. Later below, you’ll also see how those agent systems don’t even

need source files, libraries, or build tools installed.

Where needed, you can easily scale out Incredibuild’s agent pool to cloud resources to get

hundreds, or even thousands of cores handling your build chores!

Cloud platforms like Amazon AWS, Pivotal’s Cloud Foundry, or Microsoft’s Azure lets

organizations rapidly scale out their system infrastructure. Why shouldn’t those same platforms

support an organizations build and delivery pipelines?

Frankly, Incredibuild doesn’t care where you have your build agents defined, it only needs to be

able to communicate with them. Incredibuild can use any cloud-based infrastructure as long as it

supports the provisioning of Virtual Machines. Generally that means you’ll need some form of

VPN established with those cloud-based systems; however, if you’re using those same platforms

for your system development it’s likely you’ll already have something in place.

Things are even easier if you are using Microsoft’s Azure: Incredibuild has out-of-the box support

for working with Azure. Set up your VPN, push Incredibuild agent software to your Azure

instances and Poof! you’re able to pull those instances into your agent pool. You can even use

Incredibuild to automatically provision new instances if you need them.

This ease of use runs throughout Incredibuild’s entire feature set. The goal of Incredibuild is to

ensure organizations spend less time setting up and configuring build infrastructure, and more

time focusing on delivering value to their customers.

Scaling Out to Cloud

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

12

Incredibuild focuses on ease-of-use so teams can quickly get back to work. Installation and

configuration of Incredibuild is very simple, even in large-scale environments. Default settings

are carefully chosen so teams can see great benefits with an out-of-the-box installation. For

example, sensible minimums are pre-defined for CPU utilization boundaries, available RAM, disk

caching, etc.

Incredibuild even takes it a step further by providing tools to create an agent install package that

holds project-specific configurations. Running that installer will set up the agent software, set

project-specific customizations, and establish a connection to the Incredibuild controller—all in

hands-off mode.

Finally, pool agents don’t need any additional project-specific software installed. You don’t need

to install Visual Studio, Xbox development environments, gcc, dependent libraries, templates, or

anything similar. Incredibuild’s process virtualization will bundle those resources and push them

to the agent. The agent receives that bundle and is able to perform all the assigned tasks without

ever having to rely on local resources. This is a huge time-saver for organizations since teams

never have to worry about updating libraries, patching tools, or applying service packs to

complex systems. (Note: System-level resources such as anti-virus and operating system

patches still must be managed!)

This approach has enabled Incredibuild’s customers to rapidly and dramatically improve their

build and packaging times, as can be seen in several real-world examples.

Low-Impact Solution

Organizations around the world have reached out to Incredibuild for help in improving long build

cycles in a wide range of domains.

Maturing from Long Builds to Continuous Integration

Algotec builds the Carestream Vue product suite, in use by thousands of medical facilities across

the globe. The Vue suite helps optimize medical imaging and is built on a complex codebase of

over 400 C++ projects, many with over 30+ files in each project. Source files make extensive use

of processing-intensive features like macros, TLB imports, and custom build steps.

As a result, the suite could only be built once per night. Developer integrations of changes were

slow and painful, and resulted in very long feedback cycles to the developers. Long feedback

cycles often lead to a downward spiral of quality, and can be a show-stopper in a team maturing

to processes like continuous integration or delivery.

Some Real-World Time Improvements

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

13

Algotec took the easiest possible step to implementing an Incredibuild solution: simply installing

an agent on each developer’s system to utilize existing systems on Algotec’s network. This one

step garnered improvements of 90% in smaller projects. Larger projects saw a smaller

improvement at first: 140 minutes down to 40 minutes. Algotec and Incredibuild teamed up to

optimize dependencies and other project settings, finally paring builds down to 34 minutes, an

80% improvement.

Realizing these time savings allowed Algotec to move into a continuous integration flow, running

their builds multiple times per day. Algotec was also able to begin implementing automated

testing, something that was infeasible without the extraordinary timesavings from implementing

Incredibuild.

Time Savings Equate to Better Testing

ModuleWorks builds extremely complex, highly customized solutions for Computer Aided

Manufacturing industries across the globe. Many of their customers require very specialized

configurations, resulting in ModuleWorks having to build at least 32 different binary sets for each

major release.

Because of their complex build requirements, ModuleWorks developers were constrained to

integrate sequentially. Worse yet, because of the length of the build (several days!), developers

were only able to integrate a few times per week. Additionally, tests written using Google’s GTest

framework were suffering due to length of execution. New tests weren’t being written, and

existing tests weren’t run frequently enough to head off increasing quality issues.

Simply by adopting Incredibuild, ModuleWorks was able to cut their build times from 30 minutes

to three. Test execution times for their GTest suites dropped by 86%. Before Incredibuild’s

implementation, a full build and test cycle would take over three hours; after bringing in

Incredibuild a full build cycle is less than 30 minutes.

Saving over 2.5 hours per build cycle has energized ModuleWorks’ developers to do more

automated testing. Better yet, ModuleWorks has seen significant drops in regressions since the

test suites are growing and are executed more often. Overall quality has dramatically improved

for ModuleWorks’ shipped products.

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

14

Long build cycles (regardless whether it’s build, build and test, or build and test and other tasks)

are a huge hit on a team’s productivity. As you have seen in this paper, long build times also

impact an organization’s level of quality they are delivering.

Any organization can choose to invest large amounts of time and resources into cutting their

build cycle. Alternatives exist to dramatically cut build times without such dramatic investments

of time and capital. Any organization looking for a fast win on improving build times ought to

consider Incredibuild. Better yet, go get a free trial license of Incredibuild and install it. The

minimal effort in setting up and configuring Incredibuild makes it easy to try it for yourself!

Don't Tolerate Painfully Long Builds;
Deliver Better Products!

Install Incredibuild

for Windows or Linux at

https://www.incredibuild.com/free-trial

or from within Visual Studio navigate to

File > New Project > Build Accelerator

2021 GUIDE TO FASTER CONTINUOUS INTEGRATION BUILDS

© 2021 | All rights reserved. Incredibuild Software Ltd.

