
CMake projects
in Visual Studio

Incredibuild Acceleration

Benchmark:

Table of Contents

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

© 2021 | All rights reserved. Incredibuild Software Ltd. 2

...

......................................

...

...

...

...

...

..

.............

4

5

6

6

6

7

7

7

7

Using Visual Studio + CMake + Incredibuild

How much faster are CMake builds with Incredibuild?

Here’s how we ran the benchmark?

 Step 1 – cloud and infrastructure

 Step 2 – Installing and license

 Step 3 – Checking for build requirements

 Step 4 – preparing the build

 Step 5 – running the build

 Step 6 – Analyzing build results using Incredibuild Build Monitor

© 2021 | All rights reserved. Incredibuild Software Ltd. 3

Here is a summary of why using Visual Studio CMake for your project makes sense:

Maintaining multiple projects and solutions in different branches is no longer needed.

They are autogenerated from CMakefiles.txt file.

A new version of Visual Studio does not necessitate the migration of solutions and projects.

It is easy to be on the cutting edge of Visual Studio versions.

Merging parallel work from different branches becomes a lot easier since there are no

project/solution changes to be merged.

Maintaining batch or Perl scripts is no longer necessary, as CMake can automate builds.

CI/CD pipelines built over CMake are a lot more maintainable than custom solutions based

on homegrown scripts.

TIP: Use modern CMake. If your project is still using CMake versions below 2.6, spend some

time and effort to move to the newer versions. The thumb rule is to use the version of CMake

that came after your compiler version.

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

Starting with VS2017, Visual Studio comes bundled with Modern

CMake. This makes it very easy to follow the CMake Visual Studio

workflow to be adopted even for large projects. Now that CMake

supports project generation and build for C# language, we expect

CMake Visual Studio to become more popular in the Windows world.

https://www.incredibuild.com/blog/modern-cmake-tips-and-tricks?utm_source=whitepaper&utm_medium=direct&utm_campaign=CMake-benchmark

© 2021 | All rights reserved. Incredibuild Software Ltd. 4

In addition to CMake, Visual Studio also comes bundled with Incredibuild which can now be

used seamlessly to accelerate CMake builds from within Visual Studio.

The backbone of Incredibuild’s offering, Virtualized Distributed Processing™ enables a workload

that consists of multiple, concurrent processes to be automatically and dynamically distributed

to hundreds, and even thousands of idle CPUs on remote machines across your network or

public cloud.

As CMake builds and C++ builds in general consist of hundreds of compilation tasks that can be

executed in parallel, having hundreds of cores at your disposal can highly accelerate build times,

which is exactly what distributed computing is all about.

Virtualized Distributed Processing™ can even use idle CPUs on remote machines while users are

working on them – operating in the background. In organizations that have hundreds of

machines, the aggregated number of idle CPUs in any given moment can easily be in the

thousands. These are wasted cores that Incredibuild recaptures to accelerate time consuming

workloads in need of computing power.

Incredibuild runs processes on remote machines in a secure sandbox. Everything a process

requires to run properly is dynamically emulated by Incredibuild from the local host to the

remote machine. This means all you need to install on remote machines is the Incredibuild

Agent – there’s no need to install Visual Studio, nor your source code or any other build tools.

Any output generated by the remotely executed process - std output, errors, return codes, files

generated, etc. – is automatically synched back to the local host, as if the process had been

executed locally.

In the Visual Studio Installer, ensure that the checkboxes for “C++ CMake tools for Windows” and

“IncrediBuild – Build Acceleration” are selected:

Using Visual Studio + CMake + Incredibuild

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

https://www.incredibuild.com/solutions/accelerate-visual-studio-cc-builds?utm_source=whitepaper&utm_medium=direct&utm_campaign=CMake-benchmark
https://www.incredibuild.com/technology#:~:text=Under%20the%20hood%3A%20Virtualized%20Distributed%20Processing%E2%84%A2&text=The%20principle%20is%20simple%3A%20when,across%20your%20network%20or%20cloud.

© 2021 | All rights reserved. Incredibuild Software Ltd. 5

The following data is based on running CMake with MSBuild by compiling the popular core

OpenCV open-source project to establish a known base line. This example uses the Ninja

generator, but all the Visual Studio generators are supported. Here are the results with

Incredibuild:

of machenes / Cores

1 machine 8 local

4 machine 22 cores

5 machine 30 cores

10 machine 112 cores

Build Time

How much faster are CMake builds
with Incredibuild?

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

Once installed, an Incredibuild toolbar and menu appear in the Visual Studio development

environment, offering Incredibuild’s distributed Build and Rebuild operations.

16 Min

6:26

4:42

1:41

© 2021 | All rights reserved. Incredibuild Software Ltd. 6

We have decided to use the AWS c5 family infrastructure to run the benchmark, to reach

extensive compute power and flexibility. Also, we have used it in a pure cloud model. Due to the

nature of the infrastructure, we used RDP access, resulting in optimal results, speed wise, latency

wise and security level wise.

Here’s how we ran the benchmark?

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

All in all, we got a 9.5X performance boost which means developers can spend more time

building great code in the zone and less time waiting for code to build. In this specific use-case,

adding additional cores to the Incredibuild pool, on top of the 100 cores used in this example,

will result in even better compile time.

The cherry on top: you can use the same Incredibuild infrastructure to accelerate your CMake

project under your CI/CD of choice for the full experience and to also accelerate unit tests that

are part of your build or other compute intensive processes such as code analysis, code signing,

various test types and more.

Step 1 – cloud and infrastructure

Installing Incredibuild is super simple, a few clicks and you are good to go.

When installing on a new machine, Incredibuild is the only tool you’ll need to install –

Incredibuild will perform the distribution, utilizing the Incredibuild proprietary VE, which handles

the distribution of the tool sets as well.

We used the latest official version of Incredibuild and proceeded to install the coordinator, which

acts as the mediator machine and as the license server.

The coordinator monitors who requested build compilation assistant, and which machines are

free to aid the running build.

After installing the coordinator, we loaded the license onto it, installed the same version on 4

additional machines, verified they all point at the coordinator IP, and once all machines were

registered on the coordinator monitor, the environment was ready.

Step 2 – Installing and license

© 2021 | All rights reserved. Incredibuild Software Ltd. 7

INCREDIBUILD ACCELERATION BENCHMARK: CMAKE PROJECTS IN VISUAL STUDIO

Analyzing the results, it showed the build which utilized all cores presented the best results

of 1 minute and 42 seconds.

The build monitor launched automatically as the build starts, providing us a with a real time

glance of machines used, workloads currently running and the various build parts. The blue,

representing linking, provided us with the ability to identify bottlenecks within the workload.

To learn more visit our website or download our free license.

Running CMake / OpenCV requires either Visual Studio, or command line invocation.

As Incredibuild supports both options, and we have used Visual Studio, we needed to update

the license to support Visual Studio.

Step 3 – Checking for build requirements

We have Installed Visual Studio on one of the cloud machines which will be the initiator (the

machine which launches the build).

We downloaded and installed Open CV and set it to run through CMake.

We were than ready to launch the build.

Step 4 – preparing the build

We have run the build several times to produce benchmark numbers and assess performance.

First, we ran the build on only one machine. This allowed us to understand how long the build

compiles on one machine, with Incredibuild and without.

The benchmarks involved a different number of cores, using all helpers.

Step 5 – running the build

Step 6 – Analyzing build results using Incredibuild Build Monitor

https://www.incredibuild.com/?utm_source=whitepaper&utm_medium=direct&utm_campaign=CMake-benchmark
https://www.incredibuild.com/free-trial?utm_source=whitepaper&utm_medium=direct&utm_campaign=CMake-benchmark

