
Process change – Moving the development team to using a gated check-in methodology. A code

check-in cannot take place before an incremental build is successfully executed. In gated check-in

methodology it is essential to make sure that your latest version always passes compilation. This

process is done many times a day per developer. When the process takes too long the developer will

tend to either postpone their check-ins or start working on a different task before they make sure that

their current check-in has passed; they may just simply wait for it to finish, significantly reducing

productivity. For Cellebrite, an incremental build took between 5-6 minutes. The goal was to reduce

this process to around 1 minute.

Packaging – Cellebrite has a large number of customers, each requiring individual branding and

licensing.

As a result, the company must individually pack and distribute a significant number of end-products.

A check-in task can pass a compilation process but fail in the packaging process. Cellebrite’s

packaging process took 2 hours. Consequently, developers avoided verifying that their check-ins

caused the packaging process to fail. The challenge was to provide the developers with a testable

installation package in less than 10 minutes.

The Challenge

Cellebrite
Cellebrite dramatically accelerates

build time and packaging processes,

reducing over-all build process by 70%

elerates

processes,,

cess by 700%%

Industry

| Computer Software

Results

| Compilation reduced from 17 mins to 6 mins

Process

| C++

CASE STUDY

Cellebrite Ltd. is a market leader in extracting data from mobile devices, for the retail and forensic markets.

The company has adopted Microsoft’s Team Foundation Server and uses the majority of its capabilities

including: source control, work item tracking, automated builds, reporting, and project management. The

company’s source code spans several hundred individual Visual Studio projects, where about 80% of them

are native C++-based and 20% are C#-based.

“Incredibuild enabled us to drastically

reduce our overall Microsoft® TFS

development processes. Now our agile

development is effective and scalable.

Without Incredibuild’s parallelization

capabilities, the speedup and resulting

improvement would not be possible.”

© 2022 Incredibuild Software Ltd. All rights reserved.

incredibuild.com

Yuval Mazor

Senior ALM Architect

With IncredibuildWithout Incredibuild

50 mins2 hours

6 mins17 minsCompilation

Packaging

Solution

Cellebrite uses Incredibuild to parallelize two long

and complicated team build-based processes:

Compilation – the generation of executable

artifacts from source code.

Packaging – the generation of installable

end-products from compilation artifacts, branded

and licensed to individual customers

Cellebrite has completely revamped its build

process. The company is using Microsoft TFS with

Incredibuild acceleration to streamline its

development process. While in the past a single

product release for all its customers would take a

number of hours, today the company can issue a

complete release cycle in less than an hour.

Furthermore, the new standard is that a single

developer can check-in code and receive a testable

installation package in no more than 10 minutes.

This has led to a major shift in the way developers

and QA engineers view their own build processes.

Benefits

Without Incredibuild’s parallelization capabilities,

the speedup and resulting improvement in the

development process would not have been

possible. Incredibuild has dramatically reduced the

build and packaging stages:

Release Cycle Optimization – A complete product

release cycle for all customized packages used to

take a few hours; now it takes less than an hour. This

has considerably improved time to market and

saved major product release efforts.

Significant Process Improvement – The smallest

amount of code can be checked-in and tested

individually with very little effort. If a specific

package is found to contain bugs, it is simply

discarded and a new one is built in its place.

Reduced build and packaging time – Streamlined

TFS processes, enabling scalable CI platform and

making Agile development feasible.

